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ABSTRACT: Recent research into biorefineries resulted in
many competing concepts and technologies for conversion of
renewable biobased feedstock into an array of promising
products including fuels, chemicals, materials, etc. The topic of
this study is collection and management of the complex
biorefinery data that are needed among others to support the
superstructure-based optimization studies. To this end, we first
formulate an integrated thermochemical and biochemical
biorefinery superstructure and then use a generic modeling
approach to represent each processing technology in the
superstructure. The generic model parameters includes reaction
yield, utility consumption, and separation efficiency among
others, which are identified on the basis of input−output data
(generated from rigorous models) collected from detailed
biorefinery case studies reported in the open literature. The outcome is a verified database for the extended biorefinery networks
combining thermochemical and biochemical platforms that represents 2882 potential biorefinery routes. The validated
biorefinery database is made public and can be used to cross-validate and benchmark new biorefinery technologies and concepts
as well as in superstructure-based optimization studies.
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■ INTRODUCTION

The limited resources of fossil fuel feedstock form a serious
challenge to the future growth of the processing and chemical
industries. This motivates the development of new and more
sustainable technologies for processing renewable feedstocks,
with the aim of bridging the gap for fuel, chemicals, and
material production. In a biorefinery, a biobased feedstock is
processed to produce various products such as fuel, chemicals,
or power/heat. As there are several feedstock sources, as well as
many alternative conversion technologies to choose from to
match a range of products, this creates a large number of
potential processing paths for biorefinery development.3,7,10

The characterization of each process alternative requires a
substantial amount of information: parameters, variables,
models of known reactions, thermodynamic properties, process
efficiencies, and experimental data.1,2,4 In order to manage the
complexity of designing a biorefinery, several publications have
focused on simplification, i.e., (i) to find an optimal processing
route considering only the reaction,21,22 (ii) to limit the number
of processing steps to five steps,11 or (iii) to develop a
systematic study of the superstructure of integrated biorefi-

neries by using a combined process and economic modeling.16

Clearly, in the early stage of biorefinery planning and designa
phase that is often characterized by lack of detailed data it is
important to simplify and manage the complexity related to the
huge amount of data that is to be processed prior to identifying
the optimal biorefinery processing path with respect to
economics, consumption of resources, and sustainability.
A methodology to generate and identify optimal biorefinery

networks was developed earlier.15,24 The methodology is based
on superstructure optimization and consists of tools and
methods including databases, models, a superstructure, and
solution strategies to represent, describe, and evaluate various
processing network alternatives. The data collection and the
modeling form a significant part of this methodology, which is
the subject of this contribution.
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In this study, we expand the scope and the size of the
biorefinery network problem by extending the database,
models, and superstructure of the methodology with
thermochemical biomass conversion routes and integrate
them with the superstructure of the biochemical conversion
network.24 In particular, in this paper, we present a generic
process modeling approach to collect and manage multi-
disciplinary and multidimensional data related to process
alternatives in a biorefinery process network. We then perform
a verification of the generic models and its parameters against
the actual data source for quality control purposes. We also
briefly introduce the MINLP-based problem formulation to
indicate how the generic model and data developed in this
contribution are embedded in the optimization problem setting.
The solution and analysis of the optimization problem itself,
including the effect of data uncertainties, is however beyond the
scope of this contribution and subject to further work.
The paper is organized as follows: (i) the overall method-

ology used in this study is briefly introduced and (ii) the
methodology is applied to the expanded biorefinery network,
where the superstructure definition, data collection, and data
validation are presented.

■ FRAMEWORK FOR SYNTHESIS AND DESIGN OF
BIOREFINERY

This study uses an earlier developed framework,15 the so-called
integrated business and engineering framework (Figure 1). In

particular, we highlight the data management and collection
efforts with a generic process modeling approach13 to collect
and manage the complexity of multidisciplinary and multi-
dimensional data related to the different process alternatives in
a biorefinery process network. The different steps that are part
of the framework (Figure 1) will be explained briefly.

Step 1: Problem Definition. The first step includes the
definition of the problem scope, selection of suitable objective
functions, and optimization scenarios with respect to either
business strategy, engineering performance, sustainability, or a
combination of such objectives.

Step 2: Superstructure Definition. A superstructure
representing different biorefinery concepts and networks is
formulated by performing a literature review. A typical
biorefinery network consists of a number of processing steps
converting or connecting biomass feedstocks to bioproducts
such as pretreatment, primary conversion (gasification,
pyrolyis), gas cleaning and conditioning, fuel synthesis, and
product separation and purification. Each processing step is
defined by one or several blocks depending on the number of
unit operations considered in the step (several unit operations
can be modeled using one process block). Each block
incorporates the generic model to represent various tasks
carried out in the block such as mixing, reaction, and separation
(Figure 2).15 Detailed presentation of the generic model itself is
given below.

Step 3: Data Collection and Modeling. Once the
superstructure is defined, the data are collected and modeling
is performed. Generally, the models for each processing
technology are rigorous, nonlinear, and complex models (e.g.,
kinetics, thermodynamics). In this step, however, a simple
input−output type generic block model is used that is identified
from the data generated from the above-mentioned complex
model. This generic block thus consists of four parts of the
typical simple mass balance equations: (i) mixing, (ii) reaction,
(iii) waste separation, and (iv) product separation.

= +Fm Fin Ri kk i kk i kk, , , (1)

μ α= × ×R Fin( )i kk i j kk i kk i kk, , , , , (2)

∑ γ θ= + × ×

×

Fr Fm MW

Fm MW

(

/ )

i kk i kk i rr i rr react rr

i kk react

, , , ,

, (3)

= − ×Fsw SW Fr(1 )i kk i kk i kk, , , (4)

= ×waste SW Fri kk i kk i kk, , , (5)

= ×Fout Split Fsw1i kk i kk i kk, , , (6)

Figure 1. Steps taken in the data management and collection
framework: Dashed boxes indicate the outcome of each step of the
workflow.

Figure 2. Generic process block model.
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Equations 1−7 are the equations used for the generic block
to estimate the outlet mass flow (Fout1i,kk, Fout2i,kk) using
simple mass balances. In eqs 1 and 2, the chemicals and utilities
used (Ri,kk) for each processing technology are calculated by
using the ratio (μi,j,kk) to the inlet mass flow rate (Fini,kk). The
parameter αi,kk represents the consumption of the utilities or
chemicals: 0 corresponds to no consumption while 1
corresponds to 100% consumption. In eq 3, the reaction outlet
mass stream (Fri,kk) is calculated based on stoichiometry, γi,rr,
and conversion fraction, θreact,rr. In eqs 4 and 5, the waste stream
(wastei,kk) and the remaining stream (Fswi,kk) are calculated on
the basis of the removal fraction, SWi,kk. The product outlet
streams are calculated in eqs 6 and 7 on the basis of a product
separation fraction, Spliti,kk. Moreover, in order to connect each
generic block and thereby formulate the superstructure, eqs
8−10 are used. The mass outlet flows mentioned earlier
(Fout1i,kk, Fout2i,kk) are called primary and secondary outlet
flow, respectively. The primary and secondary outlet flows are
connected to the next generic blocks using binary variables (Sp,
S), respectively. The outlet flows between the generic blocks
(F1i,k,kk, F2i,k,kk) of each stream (primary and secondary) are
summed up as the input of the next generic block. Note as well
that recycle flows can be considered using eqs 8−10. There are
two potential cases of recycle flows addressed: (i) recycle flows
within the same processing step, i.e., internal recirculationthe
simulation of the recycle flows and their impact on process
performance needs to be done prior to estimating the
parameter values for the corresponding generic model block
(e.g., processing steps 2 and 4), and (ii) recycle flows to the
previous processing step, which is handled by using eqs 8 and 9
. The appropriate values for the above-mentioned parameters
can be collected in several ways including (i) literature sources
or technical reports, (ii) experimental data, (iii) simulation
results, or (iv) stream table or operating data of a designed
flowsheet. The collected data are in the end organized in a
multidimensional matrix form that represents processsing steps,
alternatives, and components, among others.
Step 4: Models and Data Verification. After the

superstructure is defined and the parameters are collected, a
validation of the selected models and parameters needs to be
performed for quality and consistency check. The validation
can be performed in this step by fixing the decision variables in
the MINLP problem formulation, i.e., the vector y (see below),
and thereby perform a simulation for each processing
technology or path followed by comparison of the simulation
results against the available data. Such data can originate either
from experiments or from the literature. All the necessary
equations and constraints relevant to each processing
technology are also formulated in this step prior to be solved
as MILP or MINLP problems in GAMS.
The output of this step is a verified database representing the

biorefinery superstructure formulated in step 2 and stored in an
Excel worksheet. To further highlight the use of this database, a
simple optimization problem (MINLP) is briefly presented

below to indicate how the generic models and parameters are
embedded in the optimization problem formulation. The
optimization formulation is presented in eqs 11−16 that
consists of the objective function (e.g., total annualized costs,
eq 11) subjected to process constraints, process models and
constraints (eqs 1−10) of the generic block mentioned earlier
(x is a process variable, e.g. the mass flow rate), structural
constraints (eqs 12 and 13) representing the superstructure
that allows selection of only one process alternative in each
step, and cost functions (eqs 14−16) to calculate the operating
and capital costs using cost parameters (P1i,kk

waste, waste treatment
cost, P2i,kk

utilities/chemicals, utility or chemicals cost, P3a
kk, reactor

investment cost, P3b
kk, separation investment cost, and capexkk,

capital expentidure).
As an example, the objective function is formulated such as

to minimize total annualized costs (TAC)

∑= − +OBJ OPEX CAPEX CAPEX t( )/
kk

1 2
(11)

Subject to (i) process models of the generic block h(μi,j,kk, αi,kk,
γi,rr, θreact,rr, MWi, Spliti,kk) = 0, as mentioned earlier (eqs 1−7
and 10), (ii) process constraints (g(Sp

k,kk, Sk,kk) ≤ 0, as
mentioned earlier (eqs 8 and 9), (iii) structural constraints
(eqs 12 and 13), and (iv) cost constraints (eqs 14−16).
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(15)
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kk
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n

,
1

,
2

(16)

The problem can be formulated and solved using appropriate
software (e.g., GAMS), and the generic model parameters and
other data appearing in the constraints (e.g., αi.kk, γi,rr, θreact,rr,
P1i,kk

waste, P2i,kk
utilities/chemicals, etc.) can be accessed from the database.

In this way, the overall MINLP problem formulation is
separated into two parts: (1) data handling and representation
(as described in this contribution, with help of a generic process
model and its parameters stored in a database) and (2) solution
and analysis of the problem. This separation of the problem in
two parts helps with the management of the complexity of
formulating an MINLP-based optimization problem for
biorefinery networks.

■ DATA MANAGEMENT, COLLECTION,
VERIFICATION, AND DISCUSSION

Step 1: Problem Definition. The problem to be addressed
is the design of an optimal biorefinery network consisting of a
thermochemical platform integrated with a biochemical plat-
form, which is indeed rather data intensive. The availability of
data is however critically important for the quality of decisions
to be generated using the decision support tool. Details about
data collection and validation are therefore presented below.

Step 2: Superstructure Definition. The thermochemical
biomass conversion routes were reviewed to formulate the
superstructure (Figure 3, top). The data and models of
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thermochemical conversion were collected from several U.S.
National Renewable Energy Laboratorty (NREL) technical
reports5,6,12,18,23 and one U.S. Pacific North National
Laboratory (PNNL) report.9 On the basis of these NREL
reports, the superstructure was defined. The proposed
processing network for thermochemical conversion consists
of 27 process intervals: 2 raw materials, 19 processing
technologies, 3 main products, and 3 byproducts, resulting in
156 parameters, 619,364 variables, and 26 discrete variables.
The proposed superstructure of thermochemical conversion

was then combined with the superstructure of biochemical
conversion24 resulting in a superstructure with a total of 96
processing intervals4: 3 raw materials, 79 processing tech-
nologies, and 14 products (Figure 3) with 576 parameters,
4,705,181 variables, and 668 discrete variables.
The above-mentioned studies contain the complex, non-

linear, rigorous models resulting in the simulated mass flow rate
for each designed process stream. This information provides an
adequate basis for estimating the parameters of each generic
block using input−output information. Further explanation and
examples are presented in the next section.
Step 3: Data Collection and Estimation. The data and

parameters required for the generic blocks that are used to
define the superstructure (Section 3.1) are presented here and
in Tables 1−5. When the reported data are available from
experimental or pilot plant studies, the data were collected
directly. If not, the data need to be obtained from simulations
or should be estimated to obtain the parameters used in the

general block using commercial process simulators such as
ProII, Aspen, etc.
Here, two examples are presented. Tables 1 and 2 and Figure

4 illustrate how the data were collected for the entrained flow
gasifier, which is one of the processing steps in the combined
superstructure. The entrained flow gasifier is used to convert
solid fuels (coal, biomass) into raw syngas. It requires a special
size reduction equipment, steam, and O2. Char, ash, soot, and
slag are collected at the bottom as wastes. It is normally
operated at high temperature (1300 °C), and the reactions
during the gasification are complex. We have used the design

Figure 3. Combined superstructure of two biorefinery conversion platforms: thermochemical (top) and biochemical platform (bottom).

Table 1. Data Collection Example for Entrained Flow
Gasifier

descriptions
raw data from NREL

study18 generic block model parameters

utilities steam to
biomass ratio

0.48 mixing: steam ratio 0.48

O2 to biomass
ratio

0.35 mixing: O2 ratio 0.35

reaction stoichiometry N/A reaction: stoichiometry
was estimated from
stream table (Table 2)

(eq
17)

conversion
fraction of C

1 reaction: conversion
fraction

1

waste
separation

char, ash, soot,
slag removal

99% SWi,kk 0.99

ash removal 95% SWash,kk 0.95
product
separation

stream
separation

1 outlet
stream

Spliti,kk 1
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data reported by a NREL study18 for estimating generic process
block parameter values for steam and O2 ratio, conversion
fraction, and char and ash removal efficiencies. On the other
hand, the complete stoichiometry of the reaction is not
available. Thus, the stoichiometry of the reaction needs to be
estimated, in this case by using eq 17 combined with the
reported mass inlet and outlet streams of the processing unit
shown in Table 2. The resulting estimated stoichiometry is
given in Table 2 as well, and the reaction stoichiometry is
shown in Figure 4. We note that there is no recycle stream for
the entrained flow gasifier as a consequence of the very high
conversion efficiencey of biomass in such an entrained flow
gasifier.

γ =
− −

−
− −

− −

mass mass MW

mass mass MW

( )/

( )/i rr
i rr out i rr in i

reactant rr out reactant rr in reactant
,

( , ) ( , )

( , ) ( , )

(17)

Another example of the data collection is the gas cleaning
and conditioning step (task 3 in Figure 3). This step has a
major function and is used to (i) remove solid particles, (ii)
convert the remaining hydrocarbons including tar into syngas,
(iii) adjust the H2/CO ratio, and (iv) remove CO2 and H2S,
which will otherwise have a negative effect on the catalysts in
the next processing step. There are several unit operations that
can be used in this step such as a tar reformer, steam reformer,
water−gas shift reactor, pressure-swing adsorption, venturi and
water scrubber, and acid removal. Here, one of the gas cleaning
and conditioning steps of the NREL studies12 is selected as the
second illustrative example. It consists of three main processing
sections: tar reformer, venturi scrubber, and acid removal. The
function of the tar reformer is to convert tar and hydrocarbons
into syngas, and the process consists of two reactors: the
reformer and combustor that requires air as utility. The
function of the venturi scrubber is mainly to remove solid
particles and water, and the acid removal process is necessary to
remove CO2 and H2S using aqueous solutions of amines, 35 wt

% monoethanol amine (MEA). Tables 3 and 4 and Figure 5
illustrate the data collection for these processes. With regard to
recycle streams, this had been modeled using eqs 8 and 9.

The two examples above show how the complex data
(simulation results, kinetics, separation efficiency, etc.) are
converted into a generic form as a set of constant parameters.
The collected data are then stored as a database in a
multidimensional matrix (database uses Excel spreadsheet
environment, but any other software environment would
work, e.g., Matlab, MS Access, etc.). In this way, storage of
the data is flexible as it only requires simple column and row
operations to add, modify, or update data from the database. At
the same time, storing the data in the matrix form provides a
certain structure to organize the data and manage the
complexity in a compact and efficient way.
The description and data collection (plus parameter

estimation where necessary) for the other process intervals
included in the superstructure of the thermochemical platform
(Figure 3, top) are summarized in Table 5. For each process
interval, mixing parameters (μi,j,kk, αi,kk), reaction parameters
(γi,rr, θi,rr), waste separation parameters (SWi,kk), and product
separation parameter (Spliti,kk) are provided. These values are
then validated by comparing the simulation results with the
reported results of the NREL/PNNL reports.5,6,9,12,18,23 The
validation is presented in the next section, and the full
simulation results are presented in the Appendix. Note that the
process intervals that are feedstocks and products are presented
here as follows: (i) feedstocks: 1-corn stover, 2-wood, and 3-
gasoline (for blending) and (ii) products: 83-FT gasoline, 84-
FT diesel, 85-mixed alcohols, 86-waste heat from gasifier, 87-
waste heat from reformer, 88-gasoline (100%), 89-bioethanol
(5%), 90-bioethanol (10%), 91-bioethanol (100%), 92-
biobutanol (5%), 93-biobutanol (10%), 94-acetone, 95-
biobutanol (100%), and 96-succinic acid. Specifically, for the

Table 2. Example of Stream Table of Entrained Flow
Gasifier18

component
gasifier inlet
flow (tpd)

gasifier outlet
flow (tpd)

γi,rr
(stoichimetry)

θi,rr
(conversion
fraction)

H2O 1182 988 −0.13 −
H2 101 123 0.13 −
C 945 − −1 1
S 4.4 − −0.0017 −
N2 16 17.7 0.0007 −
O2 1512.6 − 0.6 −
ash 120 − − −
CO − 1457 0.66 −
CO2 − 1184 0.34 −
H2S − 4.5 0.002 −
soot − 6 0.07 −
slag − 100 1.3 −

Figure 4. Process diagram showing the mass inlet/outlet, reaction, and its stoichiometry for the entrained flow gasifier.

Table 3. Data Collection Example for Processing Units for
Gas Cleaning and Conditioning: Tar Reformer, Venturi
Scrubber, and Acid Removal

descriptions raw data from NREL study generic block model parameters

utilities air required for
combustion
(tpd)

3123 air to inlet flow
ratio

1.2

reaction stoichiometry N/A stoichiometry was
estimated from
stream table

(Table4
and
Figure
5)

conversion
fraction of tar

1 conversion fraction 1

waste
separation

water removal 50% SWi,kk 0.5

CO2 removal 36% SWash,kk 0.36
H2S removal 85% SWH2S,kk 0.85

product
separation

stream
separation

2 outlet
streams

Spliti,kk (Table 4)
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biochemical platform (Figure 3, bottom), the detailed
description can be found in a previous study.24

Another important aspect to consider when collecting data is
that there are uncertainties that could be related to technical,
economical, and environmental parameters. It is important
therefore to address uncertainties in data, which is needed for
making decisions under uncertainty when applying the
computer-aided synthesis and design approach.14 In order to
exploit this feature, sources of uncertainties in the data need to
be identified and characterized. In this study, the feedstock cost
and product price are considered to have significant uncertainty
associated with their reported range. After identifying the
uncertain parameters, data were then collected for statistical
analysis. For estimating the uncertainty on product prices,
namely, gasoline, diesel, and ethanol prices, historical data (year
2012) have been used.19,20 The historical data were statistically
analyzed using the Matlab statistical toolbox that returned the
correlation matrix (given in Table 6a) as well as empirical
distribution functions (shown in Figure 6). On the basis of the
empirical distribution function, a uniform distribution is
selected to be appropriate to describe the uncertainty range
for these data together with upper and lower range as reported
in Table 6b. For the characterization of uncertainty on the
feedstocks, as no historical data was available for these, instead
the open literature was reviewed to find out lower and upper
bound and reported in Table 6b. Further, a uniform

distribution was assumed for these parameters, which is
common practice in the uncertainty and sensitivity analysis
field to use noninformative priors in case of no data
availability.8,17

Step 4: Models and Data Verification. Seven processing
paths based on five NREL reports5,6,12,18,23 and a PNNL
report9 were used to validate the models and data used for each
process interval and processing path. As explained in Section
2.4, the verification can be performed by fixing the processing
path and comparing the simulation results with the NREL and
PNNL studies. Table 7 summarizes the short descriptions,
processing paths, and the amount of biofuel products generated
for each of the seven base cases used in this study. The
simulation results of each processing path were validated by
comparing with the detailed results published in NREL-PNNL
reports.
The verification between the reported results from NREL-

PNNL reports and the simulation results of this study
(implemented in GAMS) is necessary in order to validate the
quality of the collected data and the models used in this study.
In the previous section, the data collection was presented as
examples for (i) the entrained-flow gasifier and (ii) gas cleaning
and conditioning processes. Here, the collected data for both
examples are validated and presented in Tables 8 and 9,
respectively. The validation results confirm that the quality of
the collected data is good and the data are consistent. The full
simulation results (implemented in GAMS) can be found in
Tables S1−S7 of the Supporting Information.
The expanded network provides an expanded space for

optimization studies meaning that it can generate more
scenarios to compare a large number of processing alternatives
before generating an optimal decision for biorefinery designs.
Because the problem of optimal biorefinery design is data

intensive with several categories of data (thermodynamic
properties, kinetics, operating conditions, or processing
technologies), it is therefore important to organize the data
in a compact and generic way. This is achieved by defining and
using a generic process block model. In this way, it becomes

Table 4. Stream Table of the Tar Reformer12

component inlet stream (tpd) recycle stream (tpd) air inlet (tpd) outlet stream (tpd) γi,rr θi,rr primary outlet (tpd) Spliti,rr

H2O 901 0.35 60.9 1128 0.4 − 523.9 0.46
H2 37.7 68.8 − 168.75 1.48 − 168.75 1
N2 − 43.1 2312 2360.3 − − 45.4 0.019
O2 − − 708.6 86.4 −0.98 − 0 0
CO 874 903.5 − 2345.7 0.94 − 2345.7 1
CO2 408 1153.8 1.53 1873.6 0.29 − 978 0.52
H2S 1.75 0.29 2.04 − − 2.04 1
NH3 3.8 0.27 0.3 − − 0.3 1
AR − − 39.4 39.4 − − 0 0
tar 19.8 − − −1 1 − −
CH4 180 84.9 43 −0.7 − 43 1
C2H6 5.2 3.52 0.08 −0.015 − 0.08 1
C2H4 86.7 6.6 6.9 −0.15 − 6.9 1
C2H2 8.2 0.6 0.65 −0.0159 − 0.65 1
C6H6 6.6 − 0.04 −0.0042 − 0.04 1
C3 − 17.4 17.4 − − 17.4 1
C4 − 3.2 3.2 − − 3.2 1
C5 − 0.6 0.6 − − 0.6 1
C1-ol − 4.3 4.3 − − 4.3 1
C2-ol − 11.6 11.6 − − 11.6 1
C3-ol − 0.67 0.67 − − 0.67 1

Figure 5. Process diagram showing mass inlet/outlet, reaction, and its
stoichiometry for the gas cleaning and conditioning step (modified
according to NREL report12).
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relatively easy to collect and summarize different types of data
(kinetics, experimental data, thermodynamics properties,
simulation results, operating conditions, etc.) from manyT
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Figure 6. Fuel price ($/gal) in 2012 and corresponding probability
density function for gasoline (top), diesel (middle), and ethanol
(bottom).
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resources (literatures, reports, etc.) following the generic data
structure. Indeed, the generic model reduces the data needs to
six parameters representing mixing (μi,j,kk, αi,kk), reaction (γi,rr,
θi,rr), and waste (SWi,kk) and product separation (Spliti,kk),
which are obtained from experimental and rigorous simulation
studies reported. Second, the resulting database and its
structure can be used for cross-checking and validating data.
Of course, availability of informative data resources is

important, also with the use of the generic model blocks,
because the quality of the results strongly depends on the
quality of the input data. In this study, therefore, peer-reviewed
sources and reports from national and renowned institutes such
as NREL-PNNL studies were used for several reasons: (1) The
data are in general considered to be objective and of high
quality as the data source (i.e., NREL-PNNL) confirms to
quality check and assurance and remains impartial to
technology developers. (2) The studies are easily accessible
through public resources (open literature, books, reports). (3)
The commercial technologies together their improved process
designs (heat integration, techno-economic analysis, etc.) are
represented in the alternatives. For these reasons, the
superstructure defined and data collected represents a
technically realistic and validated database of biorefinery
relevant processing technologies. The database can be accessed
from the following link: http://www.capec.kt.dtu.dk/
documents/biorefinery/InputData_biorefinery_for_public.xls.
The database also features an option to include uncertainties

for data by defining an appropriate statistical distribution
function together with their parameters (e.g., lower and upper
bounds for uniform distribution). This provides a means to
assess quality of the data sourcethe larger the uncertainty, the
lower the reliability of the data hence the performance of the
included technical alternatives. In this study, we considered raw
material costs and product prices to be major sources of
uncertainty and provided a corresponding uncertainty charac-
terization. Such uncertainty information is valuable for making
robust decisions as discussed elsewhere.14

The database will be maintained and expanded with more
biorefinery relevant technology development efforts to keep it

Table 6a. Correlation Matrix between Uncertain Data19,20

correlation
matrix

stover
cost

wood
cost

gasoline
price

diesel
price

ethanol
price

stover cost 1 0 0 0 0
wood cost 0 1 0 0 0
gasoline price 0 0 1 0.71 0.12
diesel price 0 0 0.71 1 0.36
ethanol price 0 0 0.12 0.36 1

Table 6b. Input Uncertainty for Feedstocks and Products

input uncertainty min. max. refs

corn stover cost ($/dry ton) 60 100 NREL18

wood cost ($/dry ton) 60 100 NREL5

mean std. refs

gasoline price ($/gal) 3.53 0.21 U.S. EIA
diesel price ($/gal) 3.97 0.14 U.S. EIA
ethanol price ($/gal) 2.24 0.18 U.S. Department of Agriculture

Table 7. Seven Processing Paths Used as Base Cases

cases descriptions
processing

path

biofuels
production

(tpd)

1 corn stover, entrained flow gasifier, hot
gas cleaning, Fischer−Tropsch18

1 4 6 12 16
21 83 84

111a, 262b

2 corn stover, fluidized bed gasifier, cold
gas cleaning, Fischer−Tropsch18

1 4 7 13 16
21 83 84

87a, 206b

3 wood, fluidized bed gasifier, tar
reformer, alcohol synthesis12

2 5 8 14 17
22 85 91

429c

4 wood, fluidized bed gasifier, tar
reformer, alcohol synthesis6

2 5 9 14 17
22 85 91

526c

5 wood, fluidized bed gasifier, tar
reformer, alcohol synthesis5

2 5 8 15 18
22 85 91

549c

6 corn stover, fast pyrolysis23 1 4 10 19 83
84

160a, 160b

7 wood, fast pyrolysis9 2 5 11 20 83
84

245a, 311b

aFT-gasoline. bFT-diesel. cbioethanol.

Table 8. Summary of Validation Results for Entrained Flow Gasifier

reported results from NREL report18 simulation results of this study

inlet flow R(i) waste(i) Fout1 Fout2 R(i) waste(i) Fout1 Fout2

total (tpd) 2222.22 1704 106 3819 0 1704 106 3818 0
H2O 222.22 960 988.4 960 988
H2 101.2 122.8 123
O2 812.6 700 0 700 0.1
N2 16 17.7 17.7
S 4.4 0 0.1
C 945.6 0 0.1
ash 120 0 0.1
CO 1457 1457
CO2 1184 1184
H2S 4.5 4.5
NH3 0.1 −
COS 0.3 −
AR 43.7 43.7 43.7 43.7
CH4

slag 100 100
soot 6 6
char
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up-to-date and use it in our research for identifying optimal
biorefinery concepts with respect to technical, economic, and
environmental objectives using computer-aided synthesis and
design toolbox.

■ CONCLUSIONS AND FUTURE WORK

The development of a superstructure and database for
thermochemical conversion and its integration with a
biochemical conversion route were presented. The intensive
data requirement of the biorefinery network design problem
was addressed by using a structured and generic model to
represent process alternatives. The structured and generic
approach is important to manage and check the quality and
consistency of multidimensional data. In the future, the
database will be maintained and expanded with more
biorefinery pathways and process alternatives and will be used
to perform multicriteria evaluation to identify optimal
biorefinery concepts under various applications and optimiza-
tion scenarios including sustainability metrics. The biorefinery
database features also characterize important sources of
uncertainties in data, which is valuable for assessing risk
associated with biorefinery design as well as supporting risk-
based decision making during early project planning/develop-
ment stages.
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■ ABBREVIATIONS

■ INDEXES
i, component
j, component
k, process interval (origin)
kk, process interval (destination)
react, key reactact
rr, reaction number

■ PARAMETERS
μi,j,kk, ratio of utility or chemical mixed with inlet process
stream
αi,kk, specific consumption of utility or chemical
MWi, molecular weight
γi,rr, reaction stoichiometry
θreact,rr, conversion fraction
SWi,kk, waste separation fraction
Spliti,kk, fraction of component in primary outlet stream
P1i,kk

waste, waste treament cost
P2i,kk

utilities/chemicals, utility or chemicals costs
P3a

kk,n1, investment cost parameter for reactor
P3b

kk,n2, investment cost parameter for separation
Sp
k,kk, superstructure split factor for primary outlet
Sk,kk, superstructure split factor for all outlets
OPEXkk, operating cost

Table 9. Summary of Validation Results for Gas Cleaning and Conditioning Step of Case 3: Tar Reformer, Water Scubber, and
Acid Removal12

reported results from NREL report simulation results of this study

inlet flow recycle R(i) waste(i) Fout1 Fout2 recycle R(i) waste(i) Fout1 Fout2

total (tpd) 2534 2302 3123 1089 3063 3940 2302 3123 1089 3063 3940
H2O 901.3 68.8 60.9 514.7 9.2 604 68.8 60.9 515 9.2 604
H2 37.7 168.7 168.7
O2 43.1 708.6 86.4 43.1 708.6 86
N2 2313 45.4 2315 2313 45.4 2315
CO 874.3 903.6 2346 903.6 2346
CO2 408 1153.8 1.5 572.7 405.3 895.6 1153.8 1.5 573 405.3 896
H2S 1.8 1.3 1.3
NH3 3.9
TAR 19.8 0.1
COS
AR 39.4 39.4 39.4 39.4
CH4 180.5 84.9 43.0 84.9 43
C2H6 5.2 3.5 0.1 3.5 0.1
C2H4 86.8 6.6 6.9 6.6 6.9
C2H2 8.2 0.6 0.7 0.6 0.7
C6H6 6.6 − − 0.1
C3 17.4 17.4 17.4 17.4
C4 3.2 3.2 3.2 3.2
C5 0.6 0.6 0.6 0.6
C1-ol 4.3 4.3 4.3 4.3
C2-ol 4.3 11.6 4.3 11.6
C3-ol 11.6 17.4 11.6 17.4
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CAPEXkk, capital cost

■ VARIABLES

Fini,kk, component flow of inlet process stream
Ri,kk, component flow of utility or chemical
Fmi,kk, component flow after mixing
Fri,kk, component flow after reaction
Fswi,kk, component flow after waste separation
wastei,kk, component flow of waste stream
Fout1i,kk, component flow of primary outlet stream
Fout2i,kk, component flow of secondary outlet stream
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